In vitro Neurotest platform
- Single tool for multiple applications

Multiple level evaluation in neurotoxicity
- Proliferation
- Apoptosis
- Differentiation/migration
- Growth/synaptogenesis
- Functional network analysis

Myelination
- Model process of myelination, de- and remyelination
- Study myelination using human and rodent cells
- Modeling demyelination diseases using hIPSCs
- Testing and developing drugs

Axonal studies
- Axonal growth/degeneration
- Enhanced regeneration
- Modeling diseases with axonal injury

Structural compartments for cell interactions
- Physical control over each cell population
- Microfluidics for targeted substance exposure to separate compartments

*Patent pending EP 14821235.0
US 15/104,682*
Multiple evaluation methods for cellular processes

- Compatible with conventional imaging techniques such as microscopy, time-lapse imaging, immunocytochemistry, etc.
- Integrated microelectrode array: functional verification of myelination, etc.

Scalability up to 96 well plate format

- Integration of microelectrode array supports the design to 24 and 48 well formats
- 96 well plate format option in the future

Advantages

- Suitable for co-culture studies in various neuronal applications
- Control over cell growth and cell interactions
- Faster iterations for research, neurotoxicity screening and drug development
- Suitable for human and rodent cells
- Integrated microfluidics for targeted substance exposure to desired areas
- Integrated microelectrode array technology for functional analysis
- Option for customized platform production
- Scalability to HTP

Compatible with multiple cell types

- HPSC derived neurons
- HPSC derived glial cells
- Rat embryonic and postnatal cortical neurons
- Rat DRG neurons
- Rat postnatal oligodendrocytes
- Human MSCs and lymphocytes
- etc.

Further details: soili.pakarinen @biomeditech.fi